Volumetric estimates of ancient water on Mount Sharp based on boxwork deposits, Gale Crater, Mars
نویسندگان
چکیده
While the presence of water on the surface of early Mars is now well known, the volume, distribution, duration, and timing of the liquid water have proven difficult to determine. This study makes use of a distinctive boxwork-rich sedimentary layer on Mount Sharp to map fluid-based cementation from orbital imagery and estimate the minimum volume of water present when this sedimentary interval was formed. The boxwork structures on Mount Sharp are decameter-scale light-toned polygonal ridges that are unique compared to previous observations of Martian fractured terrain because they are parallel-sided ridges with dark central linear depressions. This texture and the sedimentary setting strongly imply that the ridges are early diagenetic features formed in the subsurface phreatic groundwater zone. High-resolution orbital imagery was used to map the volume of light-toned cemented ridges. Based on the cemented volume, a minimum of 5.25 × 105m of cement was deposited within the fractures. Using a brine composition based on observations of other Martian cements and modeling the degree of evaporation, each volume of cement requires 800–6700 pore volumes of water, so the mapped boxwork ridge cements require a minimum of 0.43 km of water. This is a significant amount of groundwater that must have been present at the 3620m level, 1050m above the current floor of Gale Crater, providing both a new constraint on the possible origins of Mount Sharp and a possible future science target for the Curiosity rover where large volumes of water were present, and early mineralization could have preserved a once-habitable environment.
منابع مشابه
Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse
Gale Crater, the Mars Science Laboratory (MSL) landing site, contains a central mound, named Aeolis Mons (informally Mount Sharp) that preserves 5 km of sedimentary stratigraphy. Formation scenarios include (1) complete filling of Gale Crater followed by partial sediment removal or (2) building of a central deposit with morphology controlled by slope winds and only incomplete sedimentary fill. ...
متن کاملDeposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.
The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake bas...
متن کاملWind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars
Gale Crater contains Mount Sharp, a ~5km thick stratigraphic record of Mars’ early environmental history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, inclu...
متن کاملMineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters: A regional context for the Mars Science Laboratory Curiosity's exploration
A 500 km long network of valleys extends from Herschel crater to Gale, Knobel, and Sharp craters. The mineralogy and timing of fluvial activity in these watersheds provide a regional framework for deciphering the origin of sediments of Gale crater’s Mount Sharp, an exploration target for the Curiosity rover. Olivine-bearing bedrock is exposed throughout the region, and its erosion contributed t...
متن کاملFluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region
[1] New spacecraft observations in the Nili Fossae region of Mars reveal two valley networks (!80 and !200 km long) that each formed distributary fans as they entered an ancient 40-km diameter impact crater. An outlet channel on the eastern crater rim, lying at an elevation above the fans, suggests these fans formed as subaqueous deltas in a crater lake. Water flowing in the valley networks ent...
متن کامل